1. Bhutad, S., & Patil, K. (2022). Dataset of road surface images withseasons for machine learning applications. Data in brief, 42, 108023.https://doi.org/10.1016/j.dib.2022.108023
2. Chen, H., Yao, M., & Gu, Q. (2020). Pothole detection using location-aware convolutional neural networks. International Journal of MachineLearning and Cybernetics, 11, 899-911. https://doi.org/10.1007/s13042-020-01078-7
3. Hanif, H. M., Lie, Z. S., Astuti, W., & Tan, S. (2020). Pothole detectionsystem design with proximity sensor to provide motorcycle withwarning system and increase road safety driving. IOP ConferenceSeries: Earth and Environmental Science, 426(1), 012039.
4. Injury Facts. (2020). Motorcycles. Retrieved August 12, 2022, fromhttps://injuryfacts.nsc.org/motor-vehicle/road-users/motorcycles/
5. Kumar, A. (n.d.). Labelled image dataset containing 300+ images ofroads containing potholes. [Data set]. Kaggle. https://www.kaggle.com/datasets/atulyakumar98/pothole-detection-dataset
6. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521(7553), 436-444.
7. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., & Omata, H. (2018).Road damage detection using deep neural networks with imagescaptured through a smartphone. arXiv preprint arXiv:1801.09454.
8. Nienaber, S., Kroon, R. S., & Booysen, M. J. (2015). A comparison oflow-cost monocular vision techniques for pothole distance estimation.In 2015 IEEE Symposium Series on Computational Intelligence (pp.419-426). IEEE.
9. Ping, P., Yang, X., & Gao, Z. (2020). A deep learning approach for streetpothole detection. In 2020 IEEE Sixth International Conference on BigData Computing Service and Applications (BigDataService), pp. 198-204. IEEE.
10. Saputra, D. (2017). Studi Tingkat Kecelakaan Lalu Lintas Jalan diIndonesia Berdasarkan Data KNKT (Komite Nasional KeselamatanTransportasi) Dari Tahun 2007-2016. Jakarta: KNKT.
11. Wibowo, A. (2010). Analisa Kecelakaan Lalu Lintas Pada Ruas JalanUtama di Wilayah Kabupaten Sragen Tahun 2002-2006. UniversitasMuhammadiyah Surakarta.
12. Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision,recall, and F1 score for more thorough evaluation of classificationmodels. In Proceedings of the first workshop on evaluation andcomparison of NLP systems (pp. 79-91).