JCEEES aims to publish original articles covering the theoretical foundations of major computer, electronic and electrical engineering sciences, as well as academic, commercial and educational aspects that propose new ideas for the application and design of artificial intelligence, software and information systems. In addition to wide-ranging regular topics, JCEEES also makes it a principle to include special topics covering specific topics in all areas of interest mainly in computational medicine, artificial intelligence, computer science, and electrical & electronic engineering science.

Original Article
Advancing defense capabilities through integration of electro-optical systems and computer vision technologies
This paper presents a comprehensive study on the integration of cutting-edge technologies to enhance defense capabilities, focusing on object detection, tracking, and distance measurement tasks. Also, the integration of IMX219-77 cameras and Nvidia Jetson Nano for object detection, tracking, and distance measurement in electro-optical systems is proposed. The decision to combine these components was based on their individual strengths: the high resolution and wide field of view of the IMX219-77 cameras, and the low-power, high-performance capabilities of the Jetson Nano. Software-wise, OpenCV and GStreamer were chosen for their widespread use and capabilities in computer vision and multimedia processing tasks, respectively. The MOSSE algorithm was selected for object tracking due to its speed, efficiency, and resilience to lighting changes. Additionally, Depth Estimation (Stereo Vision) was employed for distance measurement by analyzing images captured from a pair of cameras. The proposed algorithm involves transmitting images from the cameras to the Jetson Nano, where OpenCV and GStreamer are utilized to process the data. The MOSSE algorithm is employed for object detection and tracking, while Depth Estimation generates depth maps to measure distances between objects and the camera. The study's results demonstrate accurate distance measurements with a margin of error ranging from 0 to 2 mm, falling below the acceptable threshold mentioned in academic literature. This aligns with similar studies in the field, showcasing the efficacy of the proposed integration for object detection, tracking, and distance measurement in electro-optical systems.

1. Adil, E., Mikou, M., & Mouhsen, A. (2022). A novel algorithm fordistance measurement using stereo camera. CAAI Transact IntelligenceTechnol, 7(2), 177-186. doi: 10.1049/cit2.12098
2. ???????, ?. ?., & ????????????, ?. ?. Development of systemfor distance measuring using stereo image.International Journal ofInformation and Communication Technologies,1(1), 406883., doi:10.54309/ijict.2020.1.1.048
3. Badki, A., Troccoli, A., Kim, K., Kautz, J., Sen, P., & Gallo, O. (2020).Bi3D: Stereo depth estimation via binary classifications. In Proceedingsof the IEEECVF Conference on Computer Vision and PatternRecognition (CVPR) (pp. 1600-1608).
4. Bai, L., Zhao, T., & Xiu, X. (2022). Exploration of computer vision andimage processing technology based on OpenCV. In2022 InternationalSeminar on Computer Science and Engineering Technology (SCSET)(pp.145-147). IEEE. doi: 10.1109/scset55041.2022.00042
5. Bandi, A. K., Nangunuri, L., Gujjeri, S., & Anoopama, K. (2023).Advance Intelligent Video Surveillance System Using OpenCV.International Research Journal of Engineering and Technology(IRJET), 9(12). Retrieved from https://www.irjet.net
6. Boz, U. C., & Sancaktar, İ. (2023). Stereo görüntüleme ile araçların şasieğriliklerinin tespiti. Düzce Üniv Bil Tekn Derg, 11(2), 625-637. doi:10.29130/dubited.1059019
7. Chandan, G., Jain, A., & Jain, H. (2018). Real time object detectionand tracking using Deep Learning and OpenCV. In2018 InternationalConference on inventive research in computing applications(ICIRCA)(pp. 1305-1308). IEEE., doi: 10.1109/ICIRCA.2018.8597266
8. Charles, R.A.P., Patil, A.V. (2021). Depth estimation using blob detectionfor stereo vision images. ict analysis and applications. Proceedings ofICT4SD 2020, 2, 213-222 doi: 10.1007/978-981-15-8354-4_22
9. Dardagan, N., Brdanin, A., Dzigal, D., & Akagic, A. (2021). Multipleobject trackers in opencv: a benchmark. In2021 IEEE 30th internationalsymposium on industrial electronics (ISIE)(pp. 1-6). IEEE. doi: 10.1109/ISIE45552.2021.9576367
10. Dewedar, M. A., Kamel, A. M., Hassan, M. A., & Elhalwagy, Y. Z. (2022).Real-time arial targets tracking for anti-UAV systems using OpenCV.In2022 13th International Conference on Electrical Engineering(ICEENG)(pp. 1-4). IEEE. doi: 10.1109/ICEENG49683.2022.9781864
11. Erazo, A., Tayupanta, E., & Ko, S. B. Epipolar Geometry on DronesCameras for Swarm Robotics Applications. 2020 IEEE InternationalSymposium on Circuits and Systems (ISCAS), 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180981
12. Fan, R. (2020). Computer Stereo Vision for Autonomous Car Perception:Hardware and Software Aspects. arXiv preprint arXiv:2012.03194.
13. Haggui, O., Tchalim, M. A., & Magnier, B. (2021). A comparisonof opencv algorithms for human tracking with a movingperspective camera. In2021 9th European Workshop on VisualInformation Processing (EUVIP)(pp. 1-6). IEEE. doi: 10.1109/EUVIP50544.2021.9483957
14. Khare, S., Singh, M., Kaushik, B. K., & Chandra, K. (2021). ImageProcessing Technique for Field of View Measurement of Electro-Optical Imaging System. InICOL-2019: Proceedings of the InternationalConference on Optics and Electro-Optics, Dehradun, India(pp. 369-372). Springer Singapore. doi: 10.1007/978-981-15-9259-1_84
15. Laga, H., Jospin, L. V., Boussaid, F., & Bennamoun, M. (2020). A surveyon deep learning techniques for stereo-based depth estimation.IEEETransactions on Pattern Analysis and Machine Intelligence,44(4), 1738-1764. doi: 10.1109/TPAMI.2020.3032602
16. Lin, H. Y., & Tsai, C. L. (2021). Depth measurement based on stereo visionwith integrated camera rotation.IEEE Transactions on Instrumentationand Measurement,70, 1-10. doi: 10.1109/TIM.2021.3073687
17. Liu, Y. (2023). Moving object detection and distance calculation basedon OpenCV. InSecond Guangdong-Hong Kong-Macao Greater Bay AreaArtificial Intelligence and Big Data Forum (AIBDF 2022)(Vol. 12593, pp.391-395). SPIE. doi: 10.1117/12.2672207
18. Long, X., Liu, L., Li, W., Theobalt, C., & Wang, W. (2021). Multi-view depth estimation using epipolar spatio-temporal networks.InProceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition(pp. 8258-8267). (pp. 8258-8267).
19. Mangawati A., Mohana, Leesan M. & Aradhya H. V. R., “Object TrackingAlgorithms for Video Surveillance Applications,”2018 InternationalConference on Communication and Signal Processing (ICCSP), Chennai,India, 2018, pp. 0667-0671, doi: 10.1109/ICCSP.2018.8524260
20. Meng, Z., Kong, X., Meng, L., & Tomiyama, H. (2021). Stereo vision-based depth estimation. InAdvances in Artificial Intelligence and DataEngineering: Select Proceedings of AIDE 2019(pp. 1209-1216). SpringerSingapore. doi: 10.1007/978-981-15-3514-7_90
21. Njuguna, J. C., Alabay, E., Çelebi, A., Çelebi, A. T., & Güllü, M.K. (2022, May). Efficient Hardware Implementation of Real-TimeObject Tracking. In2022 30th Signal Processing and CommunicationsApplications Conference (SIU)(pp. 1-4). IEEE. doi: 10.1109/SIU55565.2022.9864768
22. Poggi, M., Tosi, F., Batsos, K., Mordohai, P., & Mattoccia, S. (2021).On the synergies between machine learning and binocular stereo fordepth estimation from images: a survey.IEEE Transactions on PatternAnalysis and Machine Intelligence,44(9), 5314-5334. doi: 10.1109/TPAMI.2021.3070917
23. Raghunandan, A., Raghav, P., & Aradhya, H. R. (2018). Object detectionalgorithms for video surveillance applications. In2018 InternationalConference on Communication and Signal Processing (ICCSP)(pp.0563-0568). IEEE. doi: 10.1109/ICCSP.2018.8524461
24. Ristanto, S., Nugroho, W., Sulistya, E., & Suparta, G. B. (2021). Systemand method for stereoscopic image acquisition. InAIP ConferenceProceedings(Vol. 2374, No. 1). AIP Publishing. doi: 10.1063/5.0058929
25. Su, J., Wu, C., & Yang, S. (2023). Object-tracking algorithm combiningmotion direction and time series.Applied Sciences,13(8), 4835. doi:10.3390/app13084835
26. Sun, X., Jiang, Y., Ji, Y., et al. (2019). Distance measurement systembased on binocular stereo vision. InIOP Conference Series: Earth andEnvironmental Science(Vol. 252, No. 5, p. 052051). IOP Publishing. doi:10.1088/1755-1315/252/5/052051
27. Wacey, A. (2021).U.S. Patent No. 11,064,100. Washington, DC: U.S.Patent and Trademark Office.
28. Wang, X., Tao, C., Wu, R., et al. (2020). Light-field-depth-estimationnetwork based on epipolar geometry and image segmentation.JOSAA,37(7), 1236-1243.
29. Yanık, H., & Turan, B. (2022). Görüntü-Metre ile görüntü işleme tabanlımesafe ölçümü. Gazi Üniversitesi Mühendislik Mimarlık FakültesiDergisi, 38(2), 1129-1140. doi: 10.17341/gazimmfd.979121
30. Zaarane, A., Slimani, I., Al Okaishi, W., Atouf, I., & Hamdoun, A.(2020). Distance measurement system for autonomous vehicles usingstereo camera. Array, 5, 100016. doi: 10.1016/j.array.2020.100016
Volume 2, Issue 1, 2024
Page : 17-24