1. Abbasi Moud, Z., Vahdat-Nejad, H., & Sadri, J. (2021). Tourism recommendation system based on semantic clustering and sentiment analysis. <em>Expert Syst App</em>, 167,114324.
2. Ahsan, M.M., Mahmud, M.P., Saha, P.K., Gupta, K.D., & Siddique, Z. (2021). Effect of data scaling methods on machine learning algorithms and model performance. <em>Technologies</em>, 9(3),52.
3. Alamoodi, A.H., Zaidan, B.B., Al Masawa, M., Taresh, S.M., Noman, S., Ahmaro, I.Y., ... & Salahaldin, A. (2021). Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy. <em>Comput Biol Med</em>, 139,104957.
4. Bao, Y., & Jiang, X. (2016). An intelligent medicine recommender system framework.In 2016 IEEE 11th conference on industrial electronics and applications (ICIEA) (pp. 1383-1388). IEEE.
5. Chen, Y., Chang, R., & Guo, J. (2021). Effects of data augmentation method borderline-SMOTE on emotion recognition of EEG signals based on convolutional neural network. <em>IEEE Access</em>, 9,47491-47502.
6. Dağıstanlı, Ö., Erbay, H., Kör, H., & Yurttakal, A. H. (2023). Reflection of people’s professions on social media platforms.<em>Neural Comput Applications</em>,35(7),5575-5586.
7. Dinakaran, D., Manjunatha, N., Kumar, C.N., & Math, S.B. (2021). Telemedicine practice guidelines of India, 2020: Implications and challenges. <em>Indian J Psychiatry</em>,63(1),97-101.
8. Doulaverakis, C., Nikolaidis, G., Kleontas, A., & Kompatsiaris, I. (2012). GalenOWL: ontology-based drug recommendations discovery.<em>J Biomed Semantics</em>,3,1-9.
9. Feng, S., Keung, J., Yu, X., Xiao, Y., & Zhang, M. (2021). Investigation on the stability of SMOTE-based oversampling techniques in software defect prediction. <em>Informat Software Technol</em>, 139,106662.
10. Fox, S. (2013). Health online 2013. <em>Pew Intern Am Life Project</em>.
11. Garg, S. (2021). Drug recommendation system based on sentiment analysis of drug reviews using machine learning. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 175-181). IEEE.
12. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE İnternational Joint Conference on Neural Networks (pp. 1322-1328). IEEE.
13. Hossain, M. D., Azam, M. S., Ali, M. J., & Sabit, H. (2020). Drugs rating generation and recommendation from sentiment analysis of drug reviews using machine learning. In 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE) (pp. 1-6). IEEE.
14. Islek, I., & Oguducu, S.G. (2022). A hierarchical recommendation system for e-commerce using online user reviews. <em>Electronic Commer Res Appl</em>, 52,101131.
15. Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., & Salehi, M. (2018). Evaluating collaborative filtering recommender algorithms: a survey. <em>IEEE Access</em>, 6,74003-74024.
16. Kaur, H., & Mangat, V. (2017). A survey of sentiment analysis techniques. In 2017 International Conference on I-SMAC. (pp. 921-925). IEEE.
17. Kaur, H., & Mangat, V. (2017). A survey of sentiment analysis techniques. In 2017 International Conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC) (pp. 921-925). IEEE.
18. Khatter, H., Goel, N., Gupta, N., & Gulati, M. (2021). Movie recommendation system using cosine similarity with sentiment analysis. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 597-603). IEEE.
19. Oyamada, M. (2019). Extracting feature engineering knowledge from data science notebooks. In 2019 IEEE International Conference on Big Data (Big Data)(pp. 6172-6173). IEEE.
20. Pereira, J.G., Tiwari, S., & Ajoy, S. (2020). A survey on filtering techniques for recommendation system. In 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC) (pp. 1-6). IEEE.
21. Powers, D.M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. ArXiv Preprint ArXiv:2010.16061.
22. Pu, W., Liu, N., Yan, S., Yan, J., Xie, K., & Chen, Z. (2007). Local word bag model for text categorization. In Seventh IEEE international conference on data mining (ICDM 2007) (pp. 625-630). IEEE.
23. Qaiser, S., & Ali, R. (2018). Text mining: use of TF-IDF to examine the relevance of words to documents.<em>Int J Comput Appl</em>, 181(1),25-29.
24. Rodríguez, P., Bautista, M.A., Gonzalez, J., & Escalera, S. (2018). Beyond one-hot encoding: lower dimensional target embedding. <em>Image Vision Computing,</em> 75,21-31.
25. Sharma, A.K., Bajpai, B., Adhvaryu, R., Pankajkumar, S.D., Gordhanbhai, P.P., & Kumar, A. (2023). An efficient approach of product recommendation system using NLP technique. <em>Mater Today Proceed</em>, 80,3730-3743.
26. Shimada, K., Takada, H., Mitsuyama, S., Ban, H., Matsuo, H., Otake, H., ... & Kaku, M. (2005). Drug-recommendation system for patients with infectious diseases. In AMIA Annual Symposium Proceedings (Vol. 2005, p. 1112). American Medical Informatics Association.
27. Tekade, T.N., & Emmanuel, M. (2016). Probabilistic aspect mining approach for interpretation and evaluation of drug reviews. In2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) (pp. 1471-1476). IEEE.
28. Wang, Z.H.E., Wu, C., Zheng, K., Niu, X., & Wang, X. (2019). SMOTETomek-based resampling for personality recognition. <em>IEEE Access</em>, 7,129678-129689.
29. Wittich, C. M., Burkle, C. M., & Lanier, W. L. (2014). Medication errors: an overview for clinicians. In Mayo Clinic Proceedings (Vol. 89, No. 8, pp. 1116-1125). Elsevier.
30. Zhang, Y., & Zhang, L. (2022). Movie recommendation algorithm based on sentiment analysis and LDA. <em>Procedia Comput Sci</em>, 199,871-878.
31. Zhang, Y., Zhang, D., Hassan, M.M., Alamri, A., & Peng, L. (2015). CADRE: Cloud-assisted drug recommendation service for online pharmacies. <em>Mobile Networks Appl</em>, 20,348-355.