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ABSTRACT
The field of autonomous driving has seen remarkable progress in recent years, with the prediction of steering angles based on 
varying road conditions emerging as a critical area of focus. While previous efforts have concentrated on lane detection, road 
object identification, and 3-D reconstruction, our research centers on a vision-based model that leverages deep networks to 
translate raw camera images into steering angles without the need for predefined feature learning. In our paper, we introduce 
an end-to-end model that employs deep transfer learning to predict steering angles from image sequences captured by onboard 
cameras. This model merges two deep learning architectures: a convolutional neural network (CNN) and a long short-term 
memory (LSTM) network. We utilize the VGG16 network, pre-trained on ImageNet and renowned for its performance, to 
extract spatial features from the images. Concurrently, the LSTM network processes the temporal information embedded 
within the image sequences. Our proposed model comprehensively processes spatial-temporal data and adeptly models the 
nonlinear relationship between the input images and the steering angles. We conducted an experimental study using a publicly 
available dataset to evaluate the model’s effectiveness. The outcomes of our experimental analysis reveal that our model delivers 
highly efficient and accurate steering angle predictions, effectively emulating human driving patterns. Moreover, our proposed 
model delivered highly efficient and accurate steering angle predictions, achieving a mean squared error (MSE) of 0.0728 on the 
validation dataset. This result outperforms conventional models, such as NVIDIA and 3D LSTM, in terms of both accuracy and 
training efficiency.
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INTRODUCTION
The advent of autonomous vehicles represents one of the 
most transformative technological developments of the 
past decade, with far-reaching implications for road safety, 
efficiency, and transportation costs. Autonomous vehicles 
have the potential to significantly reduce traffic accidents, 
enhance fuel efficiency, and decrease the overall cost of 
vehicle ownership (Do et al., 2018; Badue et al., 2021). Recent 
advances in autonomous vehicle technology have been driven 
by rapid developments in computing power, image processing 
techniques, and sensor technologies (Velaskar et al., 2014).

Lane departure incidents are predominantly caused by 
driver distraction and constitute a substantial proportion of 
vehicular accidents. According to statistics, lane departures 
were responsible for 51% of traffic accidents in the United 
States in 2011 (Mammeri et al., 2015). To mitigate these risks, 
modern vehicles are increasingly being equipped with lane 
departure warning systems that rely on accurate steering 

angle estimation to ensure lane-keeping (Khodayari et 
al., 2010). The capacity to autonomously perform complex 
tasks-ranging from driving to surveillance and firefighting-
underscores the significance of accurate steering angle 
prediction (Alshbatat, 2013; Saleem et al., 2021). Accurate 
steering angle estimation is a critical component of successful 
lane-keeping and overall vehicular control in these systems. 
It is recognized as a vital aspect of contemporary vehicle 
technologies, particularly in the context of developing 
autonomous driving systems and advanced driver assistance 
systems (ADAS). Accurate steering angle estimation provides 
real-time insights into a vehicle’s steering dynamics, which is 
crucial for enhancing road safety and reducing the likelihood 
of accidents (Aparna et al., 2021). 

Approaches to steering angle estimation generally fall into 
two categories: computer vision-based methods and learning-
based methods (Oussama et al., 2020). Computer vision 
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techniques involve the extraction of features from images to 
compute the steering angle, whereas learning-based methods 
utilize neural networks to predict the angle through end-
to-end training (Gidado et al., 2020). End-to-end methods 
have the advantage of direct optimization without having to 
learn rules and to learn (Jiang et al., 2020). The integration 
of sophisticated machine learning algorithms, particularly 
convolutional neural networks (CNNs), has markedly 
enhanced the capabilities of autonomous driving systems 
(Song et al., 2022). CNNs have revolutionized pattern 
recognition by automating the feature extraction process 
from training data, thereby obviating the need for manually 
designed feature extraction stages. This automation has 
led to significant improvements in the accuracy of image-
based applications, which are essential for tasks such as lane 
detection and steering angle prediction (Badue et al., 2021). 
However, most existing end-to-end steering angle prediction 
models use a single deep convolutional neural network from 
sensing to control. These methods can perform well in a 
single environment, but these models lack memory (Jiang et 
al., 2020).

In this paper, we propose an innovative steering angle 
prediction model that combines the Visual Geometry Group 
16 (VGG16) model with the long short-term memory (LSTM) 
to address the drawbacks of existing models. Our model 
effectively utilizes spatial and temporal information. VGG16 
is used to extract spatial features of input images, while 
LSTM is used to capture temporal dynamics. To reduce the 
training time, we utilize a transfer learning approach and 
use the VGG16 model pre-trained on the ImageNet dataset. 
This method provides faster and more efficient results than 
training the network from scratch.

Literature Review
Steering angle prediction is a key component in developing 
autonomous driving systems. VGG16 transfer learning has 
emerged as a promising approach to improve prediction 
accuracy while reducing computational complexity. VGG16, 
a convolutional neural network (CNN) architecture, is 
particularly effective in image classification tasks, making 
it suitable for processing visual data from cameras in 
autonomous vehicles (Song et al., 2022). Using transfer 
learning, VGG16 can use pre-trained models on large datasets, 
significantly improving training efficiency and accuracy in 
steering angle prediction tasks (Alsherif et al., 2023).

To further improve the robustness of the model, data 
augmentation techniques such as horizontal flipping and 
random angle adjustments are employed. These strategies 
diversify the training data set, helping to mitigate overfitting 
and improve performance in different driving scenarios, as 
demonstrated in road tests (Song et al., 2022). In addition, 
the integration of VGG16 with LSTM networks allows the 
model to capture temporal dependencies in sequential image 
data, leading to more accurate steering predictions. By 
integrating the dynamics of vehicle control over time, this 
approach improves steering angle prediction accuracy by 
approximately 95%, outperforming traditional CNN models 
(Hoang et al., 2023).

Despite the advantages of VGG16 and transfer learning, there 
are still challenges in real-time processing and adaptation to 
different driving environments. These limitations highlight 
the need for further research and development in this area 

to improve the practical application of these models in 
autonomous vehicles.

In particular, the transfer learning approach with VGG16 
is particularly beneficial in scenarios where labeled data is 
limited. By fine-tuning VGG16 to specific driving datasets, 
researchers can achieve improved steering angle prediction 
as the model retains learned features from large image 
datasets. The depth and architecture of VGG16 allow it to 
capture intricate patterns in visual data, which is critical for 
understanding and predicting driving scenarios. In addition, 
transfer learning reduces the dependence on large datasets, 
making it possible to train models in environments where 
data collection is difficult (Ismail et al., 2024).

Studies have shown that models using VGG16 for steering 
angle prediction can achieve high accuracy, with performance 
metrics such as precision and recall significantly improved 
over traditional methods (Golnari et al., 2024; Karadeniz 
et al., 2024). However, it is important to explore alternative 
architectures such as DenseNet or ResNet, which may offer 
competitive performance and efficiency in certain contexts 
(Ismail et al., 2024).

In this study we have gone through the following questions 
and answered them in Section 3:
RQ1: How does combining VGG16 with LSTM improve 
steering angle prediction?

RQ2: What are the key factors that contribute to the accuracy 
and efficiency of the model?

RQ3: What are the potential limitations of the model in 
different driving environments?

METHODS

Convolutional Neural Networks
Over recent years, it has become clear that convolutional 
neural networks (CNNs) are highly effective at generating a 
detailed representation of an input image by transforming 
it into a fixed-length vector. This representation is versatile 
and can be applied to a range of visual tasks. CNNs excel 
at processing visual imagery. Typically, a CNN is composed 
of an input layer, an output layer, and several hidden layers. 
The hidden layers include a sequence of convolutional layers, 
pooling layers, normalization layers, and fully connected 
layers. The convolutional layers perform operations on 
the data (often images) using multiplication or a dot 
product. Although these operations are traditionally called 
convolutions, they are mathematically carried out by a sliding 
window or filter executing a dot product with the image. This 
process is crucial for determining how weights are assigned 
at specific index points within the matrix (Turk, 2024). The 
resulting output from the convolutional layer is passed on to 
the subsequent pooling layer, whose role is to downsize the 
data to simplify the computation. Owing to their exceptional 
ability to interpret visual data, CNNs and their variations are 
now being utilized for predicting steering angles. Researchers 
have investigated various CNN architectures, which differ 
in the number and size of layers and neurons, to optimize 
steering angle prediction (Song et al., 2022; Turk, 2024).

LSTMs, or long short-term memory networks, differ from 
traditional feedforward neural networks by having feedback 
connections. This allows LSTMs to not only process 
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individual data points, like images, but also to handle 
entire sequences of data, such as speech or video streams. 
LSTMs have demonstrated superior capabilities in learning 
and understanding sequences, which makes them suitable 
for autonomous vehicles (AVs) to maintain lane positions 
by analyzing the relationship between consecutive image 
frames. Typically, LSTMs are utilized after a CNN, which is 
responsible for feature detection, to comprehend temporal 
relationships within the data. This combined CNN-LSTM 
model has been adopted in various research studies (Saleem 
et al., 2021).

Data Processing
The dataset used in this study can be found in Kaggle as 
shown in. It includes approximately 10000 images along with 
their associated steering angle data. Figure 1 showcases a 
histogram of the collected data, depicting the distribution of 
steering angles against the frequency of their occurrence in 
each bin.

Figure 1. Steering angles and their frequencies

After collecting the driving data, it undergoes several 
preprocessing steps to make it suitable for training purposes. 
These steps involve a range of techniques such as data 
cleansing, image cropping and resizing as well as removing 
superfluous data and dealing with any missing values. 
The camera images are cropped to focus on the road lane 
markings which are the area of interest. Then, these cropped 
images are resized to conform to the specific dimensions 
required for the model’s input. Preprocessing the images 
facilitates faster processing and ensures the model focuses on 
extracting only the relevant datasets. Figure 2, 3 illustrate the 
images from the front-facing camera before the preprocessing 
steps and after, respectively.

Figure 2. Original image without preprocessing

After preprocessing, the data is divided into two distinct 
subsets: 80% of it for the training and 20% for the validation. 
The training dataset is used to train the deep learning 
model and the validation dataset allows for performance 
evaluation during the training process and also it is used 
to evaluate the model’s final performance. This split is a 
standard deep learning technique for preventing overfitting 
and underfitting. The Sci-kitlearn library has been utilized to 
randomly partition the data using Pandas and NumPy tools. 
Figure 4 illustrates the common steering angles across the 
training and validation datasets.

Model Architecture
The next phase involves defining the model architecture. For 
this purpose, the VGG16 transfer learning model, which has 
been pre-trained on the ImageNet dataset and is available in 
the Tensorflow. Keras library, is chosen. The base layers of 
the VGG16 are frozen to inhibit any additional training. To 
customize the model for the steering angle prediction task, 
custom layers are integrated on top of the VGG16 base. An 
LSTM layer is added to process sequential data and capture 
temporal dependencies, which is crucial for understanding 
sequences like video frames. This is followed by several dense 
layers, including fully connected layers with 100 neurons, 
50 neurons, 10 neurons, and finally 1 neuron to output the 
predicted steering angle. These layers employ as the activation 
function an exponential linear unit (ELU) to introduce 
nonlinearity. The culmination of the model architecture is a 
solitary neuron that serves as the output layer, tasked with 
predicting the steering angle. The structural designs of the 
model, including the integration of VGG16 and LSTM layers 
as well as number of parameters, are depicted in Figure 5.

Figure 3. Preprocessed image

Figure 4. Training and validation datasets
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Evaluation Metrics and Training Process
During the training phase, the preprocessed data is input 
into the model for learning. The TensorFlow and Keras 
frameworks facilitate the training of the models. Throughout 
this phase, hyperparameters such as batch size and learning 
rate are fine-tuned. As a loss function mean squared error 
(MSE) is chosen. Then the Adam optimizer is leveraged to 
reduce the MSE loss, which quantifies the difference between 
the predicted steering angles and the actual values. Key 
performance indicators, specifically training and validation 
loss are monitored to gauge the model’s effectiveness during 
the training. Upon completion of the training, the model is 
saved for future use in determining the steering angles for 
the autonomous vehicle. To capture the best model weights, 
a checkpoint callback function is utilized which ensures the 
model is saved at the point of lowest loss throughout the 
epochs.

The effectiveness of the models is evaluated using the test 
dataset. The MSE is used as the metric for evaluation. The 
optimal value for MSE is zero, indicating perfect predictions 
with no errors. The mathematical expression for calculating 
MSE is presented in equation (1).

			   (1)

Where:
n is the number of samples,
ŷi represents the predicted steering angle,
yi represents the actual steering angle,
Σ indicates summation over all samples.

The mean squared error (MSE) is selected as the primary 
evaluation metric due to its sensitivity to large errors, which 
is crucial in steering angle prediction. Large deviations 
in steering angles can lead to lane departure or accidents, 
making MSE an effective measure of model performance. 
Furthermore, MSE penalizes larger errors more heavily, 
ensuring that the model focuses on minimizing significant 
prediction deviations. The difference between training and 
validation losses indicates the model’s generalization ability. 
In our experiments, the small gap between these losses 
demonstrates that the model did not overfit to the training 
data, validating its robustness across different datasets.

RESULTS AND DISCUSSION
In our study, we utilized a Kaggle notebook environment 
consisting of GPU P100 accelerator and Keras for training 
and validating our neural networks. We used a dataset from 
Kaggle and provided it in, comprising 1802 training samples 
and 451 validation samples due to limited computational 
resources. During the training phase, the model underwent 
20 epochs with a learning rate set at 0.001 with Adam 
optimizer and a batch size of 32. The losses of MSE score 
per epochs are demonstrated in Figure 6. Remarkably, the 
training was completed in just 41 minutes, demonstrating a 
more efficient use of time compared to other models.

Figure 6. Training and validation losses per epochs

The robustness of our model is further enhanced through 
data augmentation techniques such as horizontal flipping 
and random angle adjustments. These methods ensure the 
model can generalize well across different driving scenarios, 
reducing the risk of overfitting. Furthermore, the integration 
of temporal dependencies via LSTM networks allows the 
model to handle sequential data more effectively, improving 
performance under real-world conditions.

Limitations
Also, the proposed model combining VGG16 and LSTM 
resulted 0.0728 MSE score in the validation dataset and its 
comparison with other relevant studies are given in Table. 
According to the comparison, our model surpassed the 
NVIDIA and 3D LSTM, however performed slightly worse 
against VGG16. The reason of it might be because of the used 
dataset size, computational resources such as accelerators 
(GPU) or the limitation of the dataset used. For example, if 
a dataset is chosen which includes not diverse values, then 
obviously the loss will be much lower. 

Figure 5. Detailed architecture of the proposed steering angle prediction 
model, combining VGG16 for spatial feature extraction and LSTM for 
temporal dependency handling

VGG16: Visual Geometry Group 16, LSTM: Long short-term memory
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CONCLUSION

In this study, we introduce an End-to-End steering angle 
prediction model that fuses a modified VGG16 network 
with LSTM to effectively harness both spatial and temporal 
information from input image sequences. The modified 
VGG16, based on transfer learning, allows for efficient 
training, while the LSTM network captures crucial temporal 
data. Our mixed network design, validated on the publicly 
available dataset demonstrates accurate steering angle 
predictions and robustness across different environments, as 
evidenced by our model’s lower loss value in terms of MSE 
score for the transfer learning and 3D convolutional models.

The visualization of the convolutional layers reveals that 
our model can learn key road features without predefined 
parameters an advantage of the End-to-End approach. 
Despite the promising results, these models have not yet been 
tested in real-world conditions or specialized datasets, an 
endeavor we aim to undertake in future work. We believe the 
robustness shown in experimental results bodes well for real-
time autonomous driving applications.

Looking ahead, we see potential in expanding the deep 
learning model’s architecture with larger and deeper 
layers, which may yield improved outcomes despite current 
computational limitations. However, there remains 
significant research to be done before such models can be 
widely deployed. Future models could benefit from training 
on more diverse data. Additionally, a high-quality simulator 
coupled with deep reinforcement learning, guided by a 
reward function prioritizing efficiency, ride smoothness, rule 
adherence, and safety, could further refine these models for 
public transportation use.

Benefits and Drawbacks
Every approach has advantages and disadvantages. We also 
went through analysis of the benefits and drawbacks of our 
approach and they can be found as the following:

Benefits: The combination of VGG16 and LSTM captures 
both spatial and temporal features, leading to improved 
steering angle prediction accuracy.

Transfer learning with VGG16 significantly reduces training 
time.

The model outperforms other architectures like NVIDIA and 
3D LSTM in certain scenarios.

Drawbacks: The model has not been tested in real-world 
driving environments, and the dataset used may not represent 
all possible driving conditions.

Computational resource limitations restricted the dataset size 
and could have impacted model performance.
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